Part Number Hot Search : 
PC1508 3386Y100 5KP75 4A102 AFL2700 M67749 PC1508 BFP67W
Product Description
Full Text Search
 

To Download M24C01-BN3TGG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1/28 january 2006 m24c16, m24c08 m24c04, m24c02, m24c01 16kbit, 8kbit, 4kbit, 2kbit and 1kbit serial i2c bus eeprom features summary two-wire i2c serial interface supports 400khz protocol single supply voltage: ? 2.5 to 5.5v for m24cxx-w ? 1.8 to 5.5v for m24cxx-r write control input byte and page write (up to 16 bytes) random and sequential read modes self-timed programming cycle automatic address incrementing enhanced esd/latch-up protection more than 1 million erase/write cycles more than 40-year data retention packages ? ecopack? (rohs compliant) table 1. product list figure 1. packages reference part number m24c16 m24c16-w m24c16-r m24c08 m24c08-w m24c08-r m24c04 m24c04-w m24c04-r m24c02 m24c02-w m24c02-r m24c01 m24c01-w m24c01-r pdip8 (bn) so8 (mn) 150 mil width tssop8 (dw) 169 mil width tssop8 (ds) 3x3mm2 body size (msop) ufdfpn8 (mb) 2x3mm2 (mlp)
m24c16, m24c08, m24c04, m24c02, m24c01 2/28 table of contents features summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 table 1. product list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 figure 1. packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 summary description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 figure 2. logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 table 2. signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 figure 3. 8-pin package connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 serial clock (scl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 serial data (sda) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 chip enable (e0, e1, e2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 figure 4. device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 write control (wc ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 supply voltage (v cc ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 operating supply voltage v cc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 internal device reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 power-down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 figure 5. maximum rp value versus bus parasitic capacitance (c) for an i2c bus . . . . . . . . . . . 6 figure 6. i2c bus protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 table 3. device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 start condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 acknowledge bit (ack) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 memory addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 table 4. operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 figure 7. write mode sequences with wc =1 (data write inhibited) . . . . . . . . . . . . . . . . . . . . . . . . . 9 write operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 page write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 figure 8. write mode sequences with wc =0 (data write enabled) . . . . . . . . . . . . . . . . . . . . . . . . 11 figure 9. write cycle polling flowchart using ack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 minimizing system delays by polling on ack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 figure 10.read mode sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 read operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 random address read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 current address read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 sequential read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 acknowledge in read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
3/28 m24c16, m24c08, m24c04, m24c02, m24c01 initial delivery state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 maximum rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 table 5. absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 dc and ac parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 table 6. operating conditions (m24cxx-w) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 table 7. operating conditions (m24cxx-r). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 table 8. dc characteristics (m24cxx-w, device grade 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 table 9. dc characteristics (m24cxx-w, device grade 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 table 10. dc characteristics (m24cxx-r) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 table 11. ac measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 figure 11.ac measurement i/o waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 table 12. input parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 table 13. ac characteristics (m24cxx-w) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 table 14. ac characteristics (m24cxx-r). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 figure 12.ac waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 figure 13.pdip8 ? 8 pin plastic dip, 0.25mm lead frame, package outline . . . . . . . . . . . . . . . . . 21 table 15. pdip8 ? 8 pin plastic dip, 0.25mm lead frame, package mechanical data . . . . . . . . . . 21 figure 14.so8 narrow ? 8 lead plastic small outline, 150 mils body width, package outline . . . . 22 table 16. so8 narrow ? 8 lead plastic small outline, 150 mils body width, package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 figure 15.ufdfpn8 (mlp8) 8-lead ultra thin fine pitch dual flat package no lead 2x3mm2, outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 table 17. ufdfpn8 (mlp8) 8-lead ultra thin fine pitch dual flat package no lead 2x3mm2, data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 figure 16.tssop8 ? 8 lead thin shrink small outline, package outline . . . . . . . . . . . . . . . . . . . 24 table 18. tssop8 ? 8 lead thin shrink small outline, package mechanical data . . . . . . . . . . . . 24 figure 17.tssop8 3x3mm2 ? 8 lead thin shrink small outline, 3x3mm2 body size, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 table 19. tssop8 3x3mm2 ? 8 lead thin shrink small outline, 3x3mm2 body size, mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 table 20. ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 table 21. document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
m24c16, m24c08, m24c04, m24c02, m24c01 4/28 summary description these i2c-compatible electrically erasable pro- grammable memory (eepr om) devices are orga- nized as 2048/1024/512/256/128 x 8 (m24c16, m24c08, m24c04, m24c02 and m24c01). in order to meet environmental requirements, st offers these devices in ecopack? packages. ecopack? packages are lead-free and rohs compliant. ecopack is an st trademark. ecopack speci- fications are available at: www.st.com. figure 2. logic diagram i2c uses a two-wire serial interface, comprising a bi-directional data line and a clock line. the devic- es carry a built-in 4-bit device type identifier code (1010) in accordance with the i2c bus definition. the device behaves as a slave in the i2c protocol, with all memory operations synchronized by the serial clock. read and write operations are initiat- ed by a start condition, generated by the bus mas- ter. the start condition is followed by a device select code and read/write bit (rw ) (as de- scribed in table 3. ), terminated by an acknowl- edge bit. when writing data to the memory, the device in- serts an acknowledge bit during the 9 th bit time, following the bus master?s 8-bit transmission. when data is read by the bus master, the bus master acknowledges the receipt of the data byte in the same way. data transfers are terminated by a stop condition after an ack for write, and after a noack for read. table 2. signal names figure 3. 8-pin package connections (top view) note: 1. nc = not connected 2. see package mechanical section for package dimensions, and how to identify pin-1. ai02033 3 e0-e2 sda v cc m24cxx wc scl v ss e0, e1, e2 chip enable sda serial data scl serial clock wc write control v cc supply voltage v ss ground sda v ss scl wc v cc / e2 ai02034e m24cxx 1 2 3 4 8 7 6 5 / e2 / e2 / e2 nc / e1 / e1 / e1 / nc nc / e0 / e0 / nc / nc nc /1kb /2kb /4kb /8kb 16kb
5/28 m24c16, m24c08, m24c04, m24c02, m24c01 signal description serial clock (scl) this input signal is used to strobe all data in and out of the device. in applications where this signal is used by slave devices to synchronize the bus to a slower clock, the bus master must have an open drain output, and a pull-up resistor can be con- nected from serial clock (scl) to v cc . ( figure 5. indicates how the value of the pull-up resistor can be calculated). in most applications, though, this method of synchronization is not employed, and so the pull-up resistor is not necessary, provided that the bus master has a push-pull (rather than open drain) output. serial data (sda) this bi-directional signal is used to transfer data in or out of the device. it is an open drain output that may be wire-or?ed with other open drain or open collector signals on the bus. a pull up resistor must be connected from serial data (sda) to v cc . ( fig- ure 5. indicates how the value of the pull-up resis- tor can be calculated). chip enable (e0, e1, e2) these input signals are used to set the value that is to be looked for on the three least significant bits (b3, b2, b1) of the 7-bit device select code. these inputs must be tied to v cc or v ss , to establish the device select code as shown in figure 4. figure 4. device select code write control (wc ). this input signal is useful for protecting the entire contents of the memory from inadvertent write operations. write opera- tions are disabled to the entire memory array when write control (wc ) is driven high. when uncon- nected, the signal is internally read as v il , and write operations are allowed. when write control (wc ) is driven high, device select and address bytes are acknowledged, data bytes are not acknowledged. supply voltage (v cc ) operating supply voltage v cc . prior to select- ing the memory and issuing instructions to it, a val- id and stable v cc voltage must be applied: this voltage must be a dc voltage within the specified [v cc (min), v cc (max)] range, as defined in table 6. and table 7. in order to secure a stable dc sup- ply voltage, it is recommended to decouple the v cc line with a suitable capacitor (usually of the order of 10nf to 100nf) close to the v cc /v ss package pins. the v cc voltage must remain stable and valid until the end of the transmission of the instruction and, for a write instruction, un til the completion of the internal write cycle (t w ). internal device reset. in order to prevent inad- vertent write operations during power-up, a pow- er on reset (por) circuit is included. at power-up (continuous rise of v cc ), the device does not re- spond to any instruction until v cc has reached the power on reset threshold voltage (this threshold is lower than the minimum v cc operating voltage defined in table 6. and table 7. ). when v cc has passed the por threshold, the de- vice is reset and in the standby power mode power-down. at power-down (where v cc de- creases continuously), as soon as v cc drops from the operating voltage range below the power on reset threshold voltage, the device stops re- sponding to any instruction sent to it. during power-down, the device must be deselect- ed and in the standby power mode (that is there should be no internal write cycle in progress). ai11650 v cc m24cxx v ss e i v cc m24cxx v ss e i
m24c16, m24c08, m24c04, m24c02, m24c01 6/28 figure 5. maximum rp value versus bus parasitic capacitance (c) for an i2c bus figure 6. i2c bus protocol ai01665b v cc c sda r p master r p scl c 100 0 4 8 12 16 20 c (pf) maximum rp value (k ? ) 10 1000 fc = 400khz fc = 100khz scl sda scl sda sda start condition sda input sda change ai00792b stop condition 1 23 7 89 msb ack start condition scl 1 23 7 89 msb ack stop condition
7/28 m24c16, m24c08, m24c04, m24c02, m24c01 table 3. device select code note: 1. the most significant bit, b7, is sent first. 2. e0, e1 and e2 are compared against the respective external pins on the memory device. 3. a10, a9 and a8 represent most significant bits of the address. device type identifier 1 chip enable 2,3 rw b7 b6 b5 b4 b3 b2 b1 b0 m24c01 select code 1 0 1 0 e2 e1 e0 rw m24c02 select code 1 0 1 0 e2 e1 e0 rw m24c04 select code 1 0 1 0 e2 e1 a8 rw m24c08 select code 1 0 1 0 e2 a9 a8 rw m24c16 select code 1 0 1 0 a10 a9 a8 rw
m24c16, m24c08, m24c04, m24c02, m24c01 8/28 device operation the device supports the i2c protocol. this is sum- marized in figure 6. . any device that sends data on to the bus is defined to be a transmitter, and any device that reads the data to be a receiver. the device that controls the data transfer is known as the bus master, and the other as the slave de- vice. a data transfer can only be initiated by the bus master, which will also provide the serial clock for synchronization. the m24cxx device is always a slave in all communication. start condition start is identified by a falling edge of serial data (sda) while serial clock (scl) is stable in the high state. a start condition must precede any data transfer command. the device continuously monitors (except during a write cycle) serial data (sda) and serial clock (scl) for a start condition, and will not respond unless one is given. stop condition stop is identified by a rising edge of serial data (sda) while serial clock (s cl) is stable and driv- en high. a stop condition terminates communica- tion between the device and the bus master. a read command that is followed by noack can be followed by a stop condition to force the device into the stand-by mode. a stop condition at the end of a write command triggers the internal write cycle. acknowledge bit (ack) the acknowledge bit is used to indicate a success- ful byte transfer. the bus transmitter, whether it be bus master or slave device, releases serial data (sda) after sending eight bits of data. during the 9 th clock pulse period, the receiver pulls serial data (sda) low to acknowledge the receipt of the eight data bits. data input during data input, the device samples serial data (sda) on the rising edge of serial clock (scl). for correct device operation, serial data (sda) must be stable during the rising edge of serial clock (scl), and the serial data (sda) signal must change only when serial clock (scl) is driv- en low. memory addressing to start communication between the bus master and the slave device, the bus master must initiate a start condition. following this, the bus master sends the device sele ct code, shown in table 3. (on serial data (sda), most significant bit first). the device select code consists of a 4-bit device type identifier, and a 3-bit chip enable ?address? (e2, e1, e0). to address the memory array, the 4- bit device type identifier is 1010b. each device is given a unique 3-bit code on the chip enable (e0, e1, e2) inputs. when the device select code is received, the device only responds if the chip enable addre ss is the same as the val- ue on the chip enable (e0, e1, e2) inputs. how- ever, those devices with larger memory capacities (the m24c16, m24c08 and m24c04) need more address bits. e0 is not available for use on devices that need to use address line a8; e1 is not avail- able for devices that need to use address line a9, and e2 is not available for devices that need to use address line a10 (see figure 3. and table 3. for details). using the e0, e1 and e2 inputs, up to eight m24c02 (or m24c01), four m24c04, two m24c08 or one m24c16 devices can be connect- ed to one i2c bus. in each case, and in the hybrid cases, this gives a total memory capacity of 16 kbits, 2 kbytes (except where m24c01 devic- es are used). the 8 th bit is the read/write bit (rw ). this bit is set to 1 for read and 0 for write operations. if a match occurs on the device select code, the corresponding device gives an acknowledgment on serial data (sda) during the 9 th bit time. if the device does not match the device select code, it deselects itself from the bus, and goes into stand- by mode.
9/28 m24c16, m24c08, m24c04, m24c02, m24c01 table 4. operating modes note: 1. x = v ih or v il . figure 7. write mode sequences with wc =1 (data write inhibited) mode rw bit wc (1) bytes initial sequence current address read 1 x 1 start, device select, rw = 1 random address read 0x 1 start, device select, rw = 0, address 1 x restart, device select, rw = 1 sequential read 1 x 1 similar to current or random address read byte write 0 v il 1 start, device select, rw = 0 page write 0 v il 16 start, device select, rw = 0 stop start byte write dev sel byte addr data in wc start page write dev sel byte addr data in 1 data in 2 wc data in 3 ai02803c page write (cont'd) wc (cont'd) stop data in n ack ack no ack r/w ack ack no ack no ack r/w no ack no ack
m24c16, m24c08, m24c04, m24c02, m24c01 10/28 write operations following a start condition the bus master sends a device select code with the read/write bit (rw ) reset to 0. the device acknowledges this, as shown in figure 8. , and waits for an address byte. the device responds to the address byte with an acknowledge bit, and then waits for the data byte. when the bus master generates a stop condition immediately after the ack bit (in the ?10 th bit? time slot), either at the end of a byte write or a page write, the internal write cycle is triggered. a stop condition at any other time slot does not trigger the internal write cycle. during the internal write cycle, serial data (sda) and serial clock (scl) are ignored, and the de- vice does not respond to any requests. byte write after the device select code and the address byte, the bus master sends one data byte. if the ad- dressed location is write-protected, by write con- trol (wc ) being driven high (during the period from the start condition until the end of the address byte), the device replies to the data byte with noack, as shown in figure 7. , and the location is not modified. if, instead, the addressed location is not write-protected, the device replies with ack. the bus master terminates the transfer by gener- ating a stop condition, as shown in figure 8. . page write the page write mode allows up to 16 bytes to be written in a single write cycle, provided that they are all located in the same page in the memory: that is, the most significant memory address bits are the same. if more byte s are sent than will fit up to the end of the page, a condition known as ?roll- over? occurs. this should be avoided, as data starts to become overwritten in an implementation dependent way. the bus master sends from 1 to 16 bytes of data, each of which is acknowledged by the device if write control (wc ) is low. if the addressed loca- tion is write-protected, by write control (wc ) be- ing driven high (during the period from the start condition until the end of the address byte), the de- vice replies to the data bytes with noack, as shown in figure 7. , and the locations are not mod- ified. after each byte is transferred, the internal byte address counter (the 4 least significant ad- dress bits only) is incremented. the transfer is ter- minated by the bus master generating a stop condition.
11/28 m24c16, m24c08, m24c04, m24c02, m24c01 figure 8. write mode sequences with wc =0 (data write enabled) stop start byte write dev sel byte addr data in wc start page write dev sel byte addr data in 1 data in 2 wc data in 3 ai02804b page write (cont'd) wc (cont'd) stop data in n ack r/w ack ack ack ack ack ack r/w ack ack
m24c16, m24c08, m24c04, m24c02, m24c01 12/28 figure 9. write cycle polling flowchart using ack minimizing system delays by polling on ack during the internal write cycle, the device discon- nects itself from the bus, and writes a copy of the data from its internal latches to the memory cells. the maximum write time (t w ) is shown in table 13. and table 14. , but the typical time is shorter. to make use of this, a polling sequence can be used by the bus master. the sequence, as shown in figure 9. , is: ? initial condition: a writ e cycle is in progress. ? step 1: the bus master issues a start condition followed by a device select code (the first byte of the new instruction). ? step 2: if the device is busy with the internal write cycle, no ack will be returned and the bus master goes back to step 1. if the device has terminated the internal write cycle, it responds with an ack, indicating that the device is ready to receive the second part of the instruction (the first byte of this instruction having been sent during step 1). write cycle in progress ai01847c next operation is addressing the memory start condition device select with rw = 0 ack returned yes no yes no restart stop data for the write operation device select with rw = 1 send address and receive ack first byte of instruction with rw = 0 already decoded by the device yes no start condition continue the write operation continue the random read operation
13/28 m24c16, m24c08, m24c04, m24c02, m24c01 figure 10. read mode sequences note: the seven most significant bits of the device select code of a random read (in the 1 st and 3 rd bytes) must be identical. read operations read operations are performed independently of the state of the write control (wc ) signal. the device has an internal address counter which is incremented each time a byte is read. random address read a dummy write is first performed to load the ad- dress into this address counter (as shown in fig- ure 10. ) but without sending a stop condition. then, the bus master sends another start condi- tion, and repeats the device select code, with the read/write bit (rw ) set to 1. the device acknowl- edges this, and outputs the contents of the ad- dressed byte. the bus master must not acknowledge the byte, and terminates the transfer with a stop condition. current address read for the current address read operation, following a start condition, the bus master only sends a de- vice select code with the read/write bit (rw ) set to 1. the device acknowledges this, and outputs the byte addressed by the internal address counter. the counter is then incremented. the bus master terminates the transfer with a stop condi- start dev sel * byte addr start dev sel data out 1 ai01942 data out n stop start current address read dev sel data out random address read stop start dev sel * data out sequential current read stop data out n start dev sel * byte addr sequential random read start dev sel * data out 1 stop ack r/w no ack ack r/w ack ack r/w ack ack ack no ack r/w no ack ack ack r/w ack ack r/w ack no ack
m24c16, m24c08, m24c04, m24c02, m24c01 14/28 tion, as shown in figure 10. , without acknowledg- ing the byte. sequential read this operation can be used after a current ad- dress read or a random address read. the bus master does acknowledge the data byte output, and sends additional clock pulses so that the de- vice continues to output the next byte in sequence. to terminate the stream of bytes, the bus master must not acknowledge the last byte, and must generate a stop condition, as shown in figure 10. . the output data comes from consecutive address- es, with the internal address counter automatically incremented after each byte output. after the last memory address, the address counter ?rolls-over?, and the device continues to output data from memory address 00h. acknowledge in read mode for all read commands, the device waits, after each byte read, for an acknowledgment during the 9 th bit time. if the bus master does not drive serial data (sda) low during this time, the device termi- nates the data transfer and switches to its stand- by mode. initial delivery state the device is delivered wit h all bits in the memory array set to 1 (each byte contains ffh).
15/28 m24c16, m24c08, m24c04, m24c02, m24c01 maximum rating stressing the device outside the ratings listed in table 5. may cause permanent damage to the de- vice. these are stress ratings only, and operation of the device at these, or any other conditions out- side those indicated in the operating sections of this specification, is not implied. exposure to ab- solute maximum rating conditions for extended periods may affect device reliability. refer also to the stmicroelectronics sure program and other relevant quality documents. table 5. absolute maximum ratings note: 1. t lead max must not be applied for more than 10s. 2. aec-q100-002 (compliant with jedec std jesd22-a114a, c1=100pf, r1=1500 ? , r2=500 ? ). symbol parameter min. max. unit t a ambient operating temperature ?40 130 c t stg storage temperature ?65 150 c t lead pdip-specific lead temperature during soldering 260 (1) c v io input or output range ?0.50 6.5 v v cc supply voltage ?0.50 6.5 v v esd electrostatic discharge vo ltage (human body model) (2) ?4000 4000 v
m24c16, m24c08, m24c04, m24c02, m24c01 16/28 dc and ac parameters this section summarizes the operating and mea- surement conditions, and the dc and ac charac- teristics of the device. the parameters in the dc and ac characteristic tables that follow are de- rived from tests performed under the measure- ment conditions summarized in the relevant tables. designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parame- ters. table 6. operating conditions (m24cxx-w) table 7. operating conditions (m24cxx-r) table 8. dc characteristics (m24cxx-w, device grade 6) note: 1. the voltage source driving only e0, e1 and e2 inputs must provide an impedance of less than 1kohm. symbol parameter min. max. unit v cc supply voltage 2.5 5.5 v t a ambient operating temperature (device grade 6) ?40 85 c ambient operating temperature (device grade 3) ?40 125 c symbol parameter min. max. unit v cc supply voltage 1.8 5.5 v t a ambient operating temperature ?40 85 c symbol parameter test condition (in addition to those in table 6. ) min. max. unit i li input leakage current (scl, sda, e0, e1,and e2) v in = v ss or v cc 2 a i lo output leakage current v out = v ss or v cc, sda in hi-z 2 a i cc supply current v cc =5v, f c =400khz (rise/fall time < 30ns) 2ma v cc =2.5v, f c =400khz (rise/fall time < 30ns) 1ma i cc1 stand-by supply current v in = v ss or v cc , for 2.5v < v cc = < 5.5v 1a v il input low voltage (1) ?0.45 0.3v cc v v ih input high voltage (1) 0.7v cc v cc +1 v v ol output low voltage i ol = 2.1ma when v cc = 2.5v or i ol = 3ma when v cc = 5.5v 0.4 v
17/28 m24c16, m24c08, m24c04, m24c02, m24c01 table 9. dc characteristics (m24cxx-w, device grade 3) note: 1. the voltage source driving only e0, e1 and e2 inputs must provide an impedance of less than 1kohm. table 10. dc characteristics (m24cxx-r) note: 1. the voltage source driving only e0, e1 and e2 inputs must provide an impedance of less than 1kohm. table 11. ac measurement conditions symbol parameter test condition (in addition to those in table 6. ) min. max. unit i li input leakage current (scl, sda, e0, e1,and e2) v in = v ss or v cc 2 a i lo output leakage current v out = v ss or v cc, sda in hi-z 2 a i cc supply current v cc =5v, f c =400khz (rise/fall time < 30ns) 3ma v cc =2.5v, f c =400khz (rise/fall time < 30ns) 3ma i cc1 stand-by supply current v in = v ss or v cc , v cc = 5 v 5a v in = v ss or v cc , v cc = 2.5 v 2a v il input low voltage (1) ?0.45 0.3v cc v v ih input high voltage (1) 0.7v cc v cc +1 v v ol output low voltage i ol = 2.1ma when v cc = 2.5v or i ol = 3ma when v cc = 5.5v 0.4 v symbol parameter test condition (in addition to those in table 7. ) min. max. unit i li input leakage current (scl, sda, e0, e1,and e2) v in = v ss or v cc 2 a i lo output leakage current v out = v ss or v cc, sda in hi-z 2 a i cc supply current v cc =1.8v, f c =400khz (rise/fall time < 30ns) 0.8 ma i cc1 stand-by supply current v in = v ss or v cc , 1.8v < v cc < 5.5v 1a v il input low voltage (1) 2.5 v v cc ?0.45 0.3 v cc v 1.8 v v cc < 2.5 v ?0.45 0.25 v cc v v ih input high voltage (1) 0.7v cc v cc +1 v v ol output low voltage i ol = 0.7 ma, v cc = 1.8 v 0.2 v symbol parameter min. max. unit c l load capacitance 100 pf input rise and fall times 50 ns input levels 0.2v cc to 0.8v cc v input and output timi ng reference levels 0.3v cc to 0.7v cc v
m24c16, m24c08, m24c04, m24c02, m24c01 18/28 figure 11. ac measurement i/o waveform table 12. input parameters note: 1. t a = 25c, f = 400khz 2. sampled only, not 100% tested. symbol parameter 1,2 test condition min. max. unit c in input capacitance (sda) 8 pf c in input capacitance (other pins) 6 pf z wcl wc input impedance v in < 0.3 v 15 70 k ? z wch wc input impedance v in > 0.7v cc 500 k ? t ns pulse width ignored (input filter on scl and sda) single glitch 100 ns ai00825b 0.8v cc 0.2v cc 0.7v cc 0.3v cc input and output timing reference levels input levels
19/28 m24c16, m24c08, m24c04, m24c02, m24c01 table 13. ac characteristics (m24cxx-w) note: 1. for a restart condition, or following a write cycle. 2. sampled only, not 100% tested. 3. to avoid spurious start and stop conditions, a minimum delay is placed between scl=1 and the falling or rising edge of sda. 4. previous devices bearing the process letter ?l? in the package marking guarantee a maximum write time of 10ms. for more infor - mation about these devices and their device identification, please ask your st sales office for process change notices pcn mpg/ ee/0061 and 0062 (pcee0061 and pcee0062). table 14. ac characteristics (m24cxx-r) note: 1. for a restart condition, or following a write cycle. 2. sampled only, not 100% tested. 3. to avoid spurious start and stop conditions, a minimum delay is placed between scl=1 and the falling or rising edge of sda. 4. this is preliminary information. test conditions specified in table 6. and table 11. symbol alt. parameter min. max. unit f c f scl clock frequency 400 khz t chcl t high clock pulse width high 600 ns t clch t low clock pulse width low 1300 ns t dl1dl2 2 t f sda fall time 20 300 ns t dxcx t su:dat data in set up time 100 ns t cldx t hd:dat data in hold time 0 ns t clqx t dh data out hold time 200 ns t clqv 3 t aa clock low to next data valid (access time) 200 900 ns t chdx 1 t su:sta start condition set up time 600 ns t dlcl t hd:sta start condition hold time 600 ns t chdh t su:sto stop condition set up time 600 ns t dhdl t buf time between stop condition and next start condition 1300 ns t w 4 t wr write time 5 ms test conditions specified in table 7. and table 10. symbol alt. parameter min. 4 max. 4 unit f c f scl clock frequency 400 khz t chcl t high clock pulse width high 600 ns t clch t low clock pulse width low 1300 ns t dl1dl2 2 t f sda fall time 20 300 ns t dxcx t su:dat data in set up time 100 ns t cldx t hd:dat data in hold time 0 ns t clqx t dh data out hold time 200 ns t clqv 3 t aa clock low to next data valid (access time) 200 900 ns t chdx 1 t su:sta start condition set up time 600 ns t dlcl t hd:sta start condition hold time 600 ns t chdh t su:sto stop condition set up time 600 ns t dhdl t buf time between stop condition and next start condition 1300 ns t w t wr write time 10 ms
m24c16, m24c08, m24c04, m24c02, m24c01 20/28 figure 12. ac waveforms scl sda in scl sda out scl sda in tchcl tdlcl tchdx start condition tclch tdxcx tcldx sda input sda change tchdh tdhdl stop condition data valid tclqv tclqx tchdh stop condition tchdx start condition write cycle tw ai00795c start condition
21/28 m24c16, m24c08, m24c04, m24c02, m24c01 package mechanical figure 13. pdip8 ? 8 pin plastic dip, 0.25mm lead frame, package outline note: drawing is not to scale. table 15. pdip8 ? 8 pin plastic dip, 0.25mm lead frame, package mechanical data symbol millimeters inches typ. min. max. typ. min. max. a 5.33 0.210 a1 0.38 0.015 a2 3.30 2.92 4.95 0.130 0.115 0.195 b 0.46 0.36 0.56 0.018 0.014 0.022 b2 1.52 1.14 1.78 0.060 0.045 0.070 c 0.25 0.20 0.36 0.010 0.008 0.014 d 9.27 9.02 10.16 0.365 0.355 0.400 e 7.87 7.62 8.26 0.310 0.300 0.325 e1 6.35 6.10 7.11 0.250 0.240 0.280 e2.54??0.100?? ea 7.62 ? ? 0.300 ? ? eb 10.92 0.430 l 3.30 2.92 3.81 0.130 0.115 0.150 pdip-b a2 a1 a l be d e1 8 1 c ea b2 eb e
m24c16, m24c08, m24c04, m24c02, m24c01 22/28 figure 14. so8 narrow ? 8 lead plastic small outline, 150 mils body width, package outline note: 1. drawing is not to scale. 2. the ?1? that appears in the top view of the package shows the position of pin 1 and the ?n? indicates the total number of pin s. table 16. so8 narrow ? 8 lead plastic small outline, 150 mils body width, package mechanical data symbol millimeters inches typ min max typ min max a 1.35 1.75 0.053 0.069 a1 0.10 0.25 0.004 0.010 a2 1.10 1.65 0.043 0.065 b 0.33 0.51 0.013 0.020 c 0.19 0.25 0.007 0.010 d 4.80 5.00 0.189 0.197 ddd 0.10 0.004 e 3.80 4.00 0.150 0.157 e1.27? ?0.050? ? h 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 l 0.40 0.90 0.016 0.035 0 8 0 8 n (number of pins) 88 so-a e 8 ddd b e a d c l a1 1 h h x 45? a2
23/28 m24c16, m24c08, m24c04, m24c02, m24c01 figure 15. ufdfpn8 (mlp8) 8-lead ultra thin fine pitch dual flat package no lead 2x3mm2, outline note: 1. drawing is not to scale. 2. the central pad (the area e2 by d2 in the above illustration) is pulled, internally, to v ss . it must not be allowed to be connected to any other voltage or signal line on the pcb, for example during the soldering process. 3. the circle in the top view of the package indicates the position of pin 1. table 17. ufdfpn8 (mlp8) 8-lead ultra thin fine pitch dual flat package no lead 2x3mm2, data symbol millimeters inches typ. min. max. typ. min. max. a 0.55 0.50 0.60 0.022 0.020 0.024 a1 0.00 0.05 0.000 0.002 b 0.25 0.20 0.30 0.010 0.008 0.012 d 2.00 0.079 d2 1.55 1.65 0.061 0.065 ddd 0.05 0.002 e 3.00 0.118 e2 0.15 0.25 0.006 0.010 e0.50? ?0.020? ? l 0.45 0.40 0.50 0.018 0.016 0.020 l1 0.15 0.006 l3 0.30 0.012 n (number of pins) 88 d e ufdfpn-01 a a1 ddd l1 e b d2 l e2 l3
m24c16, m24c08, m24c04, m24c02, m24c01 24/28 figure 16. tssop8 ? 8 lead thin shrink small outline, package outline note: 1. drawing is not to scale. 2. the circle in the top view of the package indicates the position of pin 1. table 18. tssop8 ? 8 lead thin shrink small outline, package mechanical data symbol millimeters inches typ. min. max. typ. min. max. a 1.200 0.0472 a1 0.050 0.150 0.0020 0.0059 a2 1.000 0.800 1.050 0.0394 0.0315 0.0413 b 0.190 0.300 0.0075 0.0118 c 0.090 0.200 0.0035 0.0079 cp 0.100 0.0039 d 3.000 2.900 3.100 0.1181 0.1142 0.1220 e 0.650 ? ? 0.0256 ? ? e 6.400 6.200 6.600 0.2520 0.2441 0.2598 e1 4.400 4.300 4.500 0.1732 0.1693 0.1772 l 0.600 0.450 0.750 0.0236 0.0177 0.0295 l1 1.000 0.0394 0 8 0 8 tssop8am 1 8 cp c l e e1 d a2 a e b 4 5 a1 l1
25/28 m24c16, m24c08, m24c04, m24c02, m24c01 figure 17. tssop8 3x3mm2 ? 8 lead thin shrink small outline, 3x3mm2 body size, package outline note: 1. drawing is not to scale. 2. the circle in the top view of the package indicates the position of pin 1. table 19. tssop8 3x3mm2 ? 8 lead thin shrink small outline, 3x3mm2 body size, mechanical data symbol millimeters inches typ. min. max. typ. min. max. a 1.100 0.0433 a1 0.050 0.150 0.0020 0.0059 a2 0.850 0.750 0.950 0.0335 0.0295 0.0374 b 0.250 0.400 0.0098 0.0157 c 0.130 0.230 0.0051 0.0091 d 3.000 2.900 3.100 0.1181 0.1142 0.1220 e 4.900 4.650 5.150 0.1929 0.1831 0.2028 e1 3.000 2.900 3.100 0.1181 0.1142 0.1220 e 0.650 ? ? 0.0256 ? ? cp 0.100 0.0039 l 0.550 0.400 0.700 0.0217 0.0157 0.0276 l1 0.950 0.0374 0 6 0 6 tssop8bm 1 8 cp c l e e1 d a2 a e b 4 5 a1 l1
m24c16, m24c08, m24c04, m24c02, m24c01 26/28 part numbering table 20. ordering information scheme note: 1. st strongly recommends the use of the automotive grade devices for use in an automotive environment. the high reliabilit y cer- tified flow (hrcf) is describe d in the quality note qnee980 1. please ask your nearest st sales offic e for a copy. 2. used only for device grade 3. for a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest st sales of- fice. the category of second level interconnect is marked on the package and on the inner box label, in compliance with jedec standard jesd97. the maximum ratings related to soldering conditions are also marked on the inner box label. example: m24c16 ? w dw 3 t p /w device type m24 = i 2 c serial access eeprom device function 16 = 16 kbit (2048 x 8) 08 = 8 kbit (1024 x 8) 04 = 4 kbit (512 x 8) 02 = 2 kbit (256 x 8) 01 = 1 kbit (128 x 8) operating voltage w = v cc = 2.5 to 5.5v (400 khz) r = v cc = 1.8 to 5.5v (400 khz) package bn = pdip8 mn = so8 (150 mil width) mb = udfdfpn8 (mlp8) dw = tssop8 (169 mil width) ds = tssop8 (3x3mm2 body size, msop8) device grade 6 = industrial temperature range, ?40 to 85 c. device tested with standard test flow 3 = device tested with high reliability certified flow 1 . automotive temperature range (?40 to 125 c) option t = tape and reel packing plating technology blank = standard snpb plating p or g = ecopack? (rohs compliant) process 2 /w or /s = f6sp36%
27/28 m24c16, m24c08, m24c04, m24c02, m24c01 revision history table 21. document revision history date version description of revision 10-dec-1999 2.4 tssop8 turned-die package removed (p 2 and order information) lead temperature added for tssop8 in table 2 18-apr-2000 2.5 labelling change to fig-2d, correction of values for ?e? and main caption for tab-13 05-may-2000 2.6 extra labelling to fig-2d 23-nov-2000 3.0 sbga package information removed to an annex document -r range changed to being the -s range, and the new -r range added 19-feb-2001 3.1 sbga package information put back in this document lead soldering temperature in the absolute maximum ratings table amended write cycle polling flow char t using ack illustration updated references to psdip changed to pdip and package mechanical data updated wording brought in to line with standard glossary 20-apr-2001 3.2 revision of dc and ac characteristics for the -s series 08-oct-2001 3.3 ball numbers added to the sbga c onnections and package mechanical illustrations 09-nov-2001 3.4 specification of test condition for leakage currents in the dc characteristics table improved 30-jul-2002 3.5 document reformatted using new template. sbga5 package removed tssop8 (3x3mm2 body size) package (msop8) added. -l voltage range added 04-feb-2003 3.6 document title spelt out more fully. ?w?-marked devices with tw=5ms added. 05-may-2003 3.7 -r voltage range upgraded to 400khz working, and no longer preliminary data. 5v voltage range at temperature range 3 (-xx3) no longer preliminary data. -s voltage range removed. -wxx3 voltage+temp ranged added as preliminary data. 07-oct-2003 4.0 table of contents, and pb-free options added. minor wording changes in summary description, power-on reset, memo ry addressing, read operations. v il (min) improved to -0.45v. t w (max) value for -r voltage range corrected. 17-mar-2004 5.0 mlp package added. absolute maximum ratings for v io (min) and v cc (min) changed. soldering temperature informat ion clarified for rohs compli ant devices. device grade information clarified. process identification letter ?g? information added. 2.2-5.5v range is removed, and 4.5-5.5v range is now not for new design 7-oct-2005 6.0 product list summary table added. aec-q100-002 compliance. device grade informaton clarified. updated device internal reset section, figure 4. , figure 5. , table 14. and table 20. added ecopack? information. updated tw=5ms for the m24cxx-w. 17-jan-2006 7.0 pin numbers removed from silhouettes (see figure 1., packages ). internal device reset paragraph moved to below supply voltage (v cc ) . supply voltage (v cc ) added below signal description . test conditions for v ol updated in table 8. and table 9. so8n package specifications updated (see table 16. ) new definition of i cc1 over the whole v cc range (see tables 8 , 9 and 10 ).
m24c16, m24c08, m24c04, m24c02, m24c01 28/28 information furnished is believed to be accurate and reliable. however, stmicroelectronics assumes no responsibility for the co nsequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. no license is granted by implication or otherwise under any patent or patent rights of stmicroelectronics. specifications mentioned in this publicati on are subject to change without notice. this publication supersedes and replaces all information previously supplied. stmicroelectronics prod ucts are not authorized for use as critical components in life support devices or systems without express written approval of stmicroelectro nics. the st logo is a registered trademark of stmicroelectronics. all other names are the property of their respective owners ? 2006 stmicroelectronics - all rights reserved stmicroelectronics group of companies australia - belgium - brazil - canada - china - czech republic - finland - france - germany - hong kong - india - israel - ital y - japan - malaysia - malta - morocco - singapore - spain - sweden - switzerland - united kingdom - united states of america www.st.com


▲Up To Search▲   

 
Price & Availability of M24C01-BN3TGG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X